
Callbacks and Events
Calls to af_lib_get_attribute() and af_lib_set_attribute*() are enqueued for handling by afLib;
and once handled, result in execution of a callback function named attrEventCallback(). You must
de�ne attrEventCallback() in your MCU code, and pass it as an argument to af_lib_create(). This
callback contains your application-speci�c code to respond to attribute changes.

Your attrEventCallback() will be called with an event type and an error code. You’ll use these data to
select an appropriate response. This page describes how your code can distinguish the events and respond
accordingly.

attrEventCallback()

Description
Application callback that is executed any time ASR has data to communicate with the MCU.

Syntax
void attrEventCallback(const af_lib_event_type_t eventType,

const af_lib_error_t error,

const uint16_t attributeId,

const uint16_t valueLen,

const uint8_t* value)

https://developer.afero.io/
https://developer.afero.io/
https://developer.afero.io/Overview
https://developer.afero.io/Tutorials
https://developer.afero.io/Cookbook
https://developer.afero.io/Projects
https://developer.afero.io/OTAMgr
https://developer.afero.io/Inspector
https://developer.afero.io/StandaloneHub
https://developer.afero.io/Console
https://developer.afero.io/MobileSDK
https://developer.afero.io/LinuxSDK-Index
https://developer.afero.io/afLibErrors
https://pdfcrowd.com/?ref=pdf

Parameters
eventType The event type for this request.

error An afLib result code

attribute_id The ID of the attribute involved.

value_len The size in bytes of the attribute value.

value The new value for the attribute.

Event Types
The following event types are de�ned in af_lib.h:

EVENT TYPE INTERPRETATION

AF_LIB_EVENT_UNKNOWN Not normally seen; intended for debugging.

AF_LIB_EVENT_ASR_SET_RESPONSE Response to af_lib_set_attribute() for an ASR
attribute.

AF_LIB_EVENT_MCU_SET_REQ_SENT Request from af_lib_set_attribute() for an MCU
attribute has been sent to ASR.

AF_LIB_EVENT_MCU_SET_REQ_REJECTION Request from af_lib_set_attribute() for an MCU
attribute was rejected by ASR.

AF_LIB_EVENT_ASR_GET_RESPONSE Response to af_lib_get_attribute().

AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION Unsolicited default noti�cation for an MCU attribute.

AF_LIB_EVENT_ASR_NOTIFICATION Unsolicited noti�cation of non-MCU attribute change.

AF_LIB_EVENT_MCU_SET_REQUEST Request from ASR to MCU to set an MCU attribute,
requires a call to af_lib_send_set_response().

https://developer.afero.io/LinuxSDK-PotencoSetupGds
https://developer.afero.io/CloudAPIs
https://developer.afero.io/FW-API
https://developer.afero.io/MCUtoHachi
https://developer.afero.io/AttrMsgProtocol
https://developer.afero.io/AttrRegistry
https://developer.afero.io/AttrChangeRules
https://developer.afero.io/API-Arduino
https://developer.afero.io/afLibLifecycle
https://developer.afero.io/afLibLoop
https://developer.afero.io/afLibAttributes
https://developer.afero.io/afLibCallbacks
https://developer.afero.io/afLibErrors
https://pdfcrowd.com/?ref=pdf

EVENT TYPE INTERPRETATION

AF_LIB_EVENT_COMMUNICATION_BREAKDOWN The communication between the MCU and the ASR
seems to have stopped, take the appropriate action (i.e.
rebooting the ASR).

Returns
None.

Special Case: MCU Confirmation of Sets Requested by ASR
Requests from ASR to set an MCU attribute value will arrive at the MCU via an
AF_LIB_EVENT_MCU_SET_REQUEST event in the attrEventCallback(). It is the responsibility of the MCU
to act on the request as appropriate, and then respond True or False, indicating whether or not the set was
completed as requested, via the af_lib_send_set_response() call.

af_lib_send_set_response()

Description
Call required in response to callback event AF_LIB_EVENT_MCU_SET_REQUEST, which is used by MCU to
con�rm/deny that the set request by ASR was successfully completed by the MCU. If the MCU was able to
set the attribute to the requested value, then this call can just return the values passed to it in this callback.
If the MCU was unable to set the requested value, then this call should return the value that the MCU will
use instead of the value requested.

https://developer.afero.io/FW-UpdateAll
https://developer.afero.io/afLibCapabilities
https://developer.afero.io/afLibLogging
https://developer.afero.io/afLibErrors
https://developer.afero.io/PeripheralUpdates
https://developer.afero.io/HWRef
https://developer.afero.io/FactoryProg
https://developer.afero.io/TechNotes
https://developer.afero.io/Training
https://developer.afero.io/RelNotes
https://developer.afero.io/Glossary
https://pdfcrowd.com/?ref=pdf

Syntax
void af_lib_send_set_response(af_lib_t *af_lib,

const uint16_t attribute_id,

bool set_succeeded,

const uint16_t value_len,

const uint8_t *value)

Parameters
af_lib Pointer to the active a�ib instance.

attr_id The attribute ID for which set request was sent.

set_succeeded Boolean indicating whether or not MCU successfully changed attribute the value.

valueLen The size in bytes of the attribute value.

value The value for the attribute.

Returns
Error.

Example 1: Translating End-User Actions and afLib3 Function Calls into
Events
attrEventCallback() will be called by afLib3 whenever ASR has information for the MCU. Your code will
depend on the eventType parameter to determine why the callback has been �red, and therefore how you
want to respond.

Let’s consider a few speci�c cases, just to make this clear:

https://pdfcrowd.com/?ref=pdf

If the button is pressed on an Afero dev board (changing the value of GPIO 3 directly), the
attrEventCallback() will be executed with eventType AF_LIB_EVENT_ASR_NOTIFICATION.

If your MCU code calls af_lib_get_attribute(), the value will be returned via the callback with
eventType AF_LIB_EVENT_ASR_GET_RESPONSE.

Consider that an end-user taps a control in your mobile application to change an attribute value. If the
attribute changed is a GPIO, your code will be informed of the change by attrEventCallback() with
eventType AF_LIB_EVENT_ASR_NOTIFICATION.

However…

If the attribute changed by the mobile app is an MCU attribute, your code will receive
AF_LIB_EVENT_MCU_SET_REQUEST.

Your MCU application should watch for event type AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION. For
each occurrence of this event, it is the responsibility of MCU to call the appropriate version of
af_lib_set_attribute() with the desired value of the corresponding attribute. This will usually be
one of two variants:

If your application is designed so that a reboot should cause a given attribute to reset to the value
speci�ed in the device Pro�le, then af_lib_set_attribute() should be called with the value
sent in the AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION event. This scheme can be useful when
you want to be able to change default attribute values for devices in the �eld via an OTA update.

If your application is designed so that the current value of an attribute as held by the MCU is the
value to be used, regardless of reboots, then af_lib_set_attribute() should be called with the
attribute value held by the MCU. This scheme can be useful when your application assumes the
MCU will ensure continuity of attribute values despite any reboots of ASR, for example, because of
a Pro�le OTA.

IMPORTANT: The AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION events will be sent during the
"attribute update-all" sequence that is part of the boot process. This sequence happens before your
application enters the AF_MODULE_STATE_INITIALIZED state – and you must not call
af_lib_set_attribute() until after you enter AF_MODULE_STATE_INITIALIZED. This means your
application code may need to temporarily store each pending attribute value upon receipt of the
AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION, and then use the stored value(s) once the application
state reaches AF_MODULE_STATE_INITIALIZED.

https://pdfcrowd.com/?ref=pdf

Example 2: Structure of a Prototypical attrEventCallback()
Typically, your callback code will branch on the eventType, and within each case, will branch again
depending on the attributeID. Given that, below is an example “shell” of an attrEventCallback() that has
a case for all eventTypes, and is also set up with cases for all system states, in the case of an
AF_LIB_EVENT_ASR_NOTIFICATION event for attribute AF_SYSTEM_ASR_STATE. You might �nd this
useful to copy/paste into your code:

// Callback executed any time ASR has information for the MCU

void attrEventCallback(const af_lib_event_type_t eventType,

const af_lib_error_t error,

const uint16_t attributeId,

const uint16_t valueLen,

const uint8_t* value) {

switch (eventType) {

case AF_LIB_EVENT_UNKNOWN:

// Should never occur (indicates an eventType = 0); primarily for debugging

break;

case AF_LIB_EVENT_ASR_SET_RESPONSE:

// Response to af_lib_set_attribute() for an ASR attribute

break;

case AF_LIB_EVENT_MCU_SET_REQ_SENT:

// Request from af_lib_set_attribute() for an MCU attribute has been sent to ASR

break;

case AF_LIB_EVENT_MCU_SET_REQ_REJECTION:

// Request from af_lib_set_attribute() for an MCU attribute was rejected by ASR

break;

case AF_LIB_EVENT_ASR_GET_RESPONSE:

// Response to af_lib_get_attribute()

break;

case AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION:

// Unsolicited default notification for an MCU attribute

break;

case AF_LIB_EVENT_ASR_NOTIFICATION:

// Unsolicited notification of non-MCU attribute change

https://pdfcrowd.com/?ref=pdf

switch (attributeId) {

case AF_SYSTEM_ASR_STATE:

switch (value[0]) {

case AF_MODULE_STATE_REBOOTED:

// ASR has rebooted. MCU Attributes are erased and must be reset

break;

case AF_MODULE_STATE_LINKED:

// Linked - ASR has rebooted (MCU Attributes erased) and then linked

break;

case AF_MODULE_STATE_UPDATING:

// Updating - There's an OTA in progress

break;

case AF_MODULE_STATE_UPDATE_READY:

// Update ready - OTA is complete; reboot needed to begin using the new code

break;

case AF_MODULE_STATE_INITIALIZED:

// Initialized - ASR now ready to service requests

break;

case AF_MODULE_STATE_RELINKED:

//Relinked - ASR has relinked with cloud

break;

default:

Serial.print("Unexpected state - "); Serial.println(value[0]);

break;

}

break;

default:

break;

}

break;

case AF_LIB_EVENT_MCU_SET_REQUEST:

// Request from ASR to MCU to set an MCU attribute, requires a call to

af_lib_send_set_response()

switch (attributeId) {

default:

https://pdfcrowd.com/?ref=pdf

break;

}

break;

default:

break;

}

}

Example 3: afBlink
This afBlink example uses a Teensy to control the LED onboard an Afero dev board. The LED can be made
to start/stop blinking by a tap on a UI control in the mobile app, or by a press on the dev board button. The
key lesson from this example comes from understanding how the code in attrEventCallback()
distinguishes between various events, and handles them accordingly. Here are four cases:

In the case of a tap on the “Start” button in the mobile app UI…

The mobile app translates the button tap into an af_lib_set_bool() for attribute AF_BLINK.

As a result, attrEventCallback() will be called with an eventType
AF_LIB_EVENT_MCU_SET_REQUEST and attributeId AF_BLINK.

So, when we get eventType AF_LIB_EVENT_MCU_SET_REQUEST belonging to attribute AF_BLINK,
our code sets the value of our variable blinking, and then calls af_lib_send_set_response to
con�rm that MCU was able to update its state.

Within our loop() function, if blinking is true, we call toggleLED() every two seconds, which
blinks the LED!

In the case of a button press on the Afero dev board…

The Afero dev board changes the local attribute value and sends an update, which causes…

attrEventCallback() to be called with an eventType AF_LIB_EVENT_ASR_NOTIFICATION and
attributeId AF_MODULO_BUTTON.

When we get eventType AF_LIB_EVENT_ASR_NOTIFICATION, belonging to attribute
AF_MODULO_BUTTON, our code toggles the value of our global curButtonValue.

https://pdfcrowd.com/?ref=pdf

Within our loop() function, if our curButtonValue is different from prevButtonValue (that is, if
the button value has changed), then we call af_lib_set_bool() on AF_BLINK, setting that
attribute, which controls blinking.

That af_lib_set_bool() call triggers the same sequence of events as example #1 above, which
results in the LED blinking.

Any time the Afero dev board reboots…

The MCU is required to call set_attribute for each MCU attribute whenever ASR reboots, as
described in MCU Attributes and Update All. So:

Upon reboot, attrEventCallback() will be called with an eventType
AF_LIB_EVENT_ASR_NOTIFICATION and attributeId AF_SYSTEM_ASR_STATE.

Presented that combination of eventType and attributeId, our code checks the value delivered via
the callback; in this case, that value is AF_MODULE_STATE_REBOOTED.

Our code responds by setting initializationPending and attr1SyncPending to true. Both
values are checked in loop():

Any time initializationPending is true, we avoid making afLib calls until we receive the
AF_SYSTEM_ASR_STATE AF_MODULE_STATE_INITIALIZED signal that tells us that ASR is
ready to handle requests.

If attr1SyncPending is true, we call af_lib_set_attribute_bool for attribute 1
(AF_BLINK), setting it to the current value of the blinking variable.

If the Afero dev board receives an OTA update…

When the OTA is complete, attrEventCallback() will be called with an eventType
AF_LIB_EVENT_ASR_NOTIFICATION and attributeId AF_SYSTEM_ASR_STATE.

We check the value delivered via the callback; in this case it’s AF_MODULE_UPDATE_READY.

Our code responds by setting rebootPending to true. This value is checked in loop(), and if true,
we trigger a reboot.

#include <SPI.h>

#include "af_lib.h"

#include "arduino_spi.h"

https://developer.afero.io/FW-UpdateAll
https://pdfcrowd.com/?ref=pdf

#include "arduino_uart.h"

#include "af_module_commands.h"

#include "af_module_states.h"

#include "arduino_transport.h"

#include "profile/afBlink/device-description.h"

#define ARDUINO_USE_SPI 1

// Check for teensy and abort if not

#if defined(TEENSYDUINO)

#else

#error "Sorry, this example written for teensy. E.G. pins are defined accordingly."

#endif

#define INT_PIN 14 // Modulo uses this to initiate communication

#define CS_PIN 10 // Standard SPI chip select (aka SS)

#define RESET 21 // This is used to reboot the Modulo when the Teensy

boots

#define RX_PIN 7

#define TX_PIN 8

// Modulo LED is active low

#define LED_OFF 1

#define LED_ON 0

#define BLINK_INTERVAL 2000 // 2 seconds

af_lib_t* af_lib = NULL;

bool initializationPending = false; // If true, we're waiting on AF_MODULE_STATE_INITIALIZED

bool rebootPending = false; // If true, a reboot is needed, e.g. if we received an OTA

firmware update.

bool attr1SyncPending = false; // If true (e.g. after reboot), we need to set MCU attr 1

volatile long lastBlink = 0; // Time of last blink

volatile bool blinking = false; // Track whether LED is blinking; represented

by attribute AF_BLINK

volatile bool moduloLEDIsOn = false; // Track whether the Modulo LED is on

uint16_t prevButtonValue = 1; // Track the button value...

uint16_t curButtonValue = prevButtonValue; // ...so we know when it has changed

void toggleModuloLED() {

setModuloLED(!moduloLEDIsOn);

https://pdfcrowd.com/?ref=pdf

}

void setModuloLED(bool on) {

if (moduloLEDIsOn != on) {

int16_t attrVal = on ? LED_ON : LED_OFF; // Modulo LED is active low

int timeout = 0;

while (af_lib_set_attribute_16(af_lib, AF_MODULO_LED, attrVal) != AF_SUCCESS) {

delay(10);

af_lib_loop(af_lib);

timeout++;

if (timeout > 500) {

// If we haven't been successful after 5 sec (500 tries, each after 10 msec delay)

// we assume we're in some desperate state, and reboot

pinMode(RESET, OUTPUT);

digitalWrite(RESET, 0);

delay(250);

digitalWrite(RESET, 1);

return;

}

}

moduloLEDIsOn = on;

}

}

void attrEventCallback(const af_lib_event_type_t eventType,

const af_lib_error_t error,

const uint16_t attributeId,

const uint16_t valueLen,

const uint8_t* value) {

switch (eventType) {

case AF_LIB_EVENT_ASR_SET_RESPONSE:

// Response to af_lib_set_attribute() for an ASR attribute

break;

case AF_LIB_EVENT_MCU_SET_REQ_SENT:

// Request from af_lib_set_attribute() for an MCU attribute has been sent to ASR

break;

case AF_LIB_EVENT_MCU_SET_REQ_REJECTION:

// Request from af_lib_set_attribute() for an MCU attribute was rejected by ASR

break;

https://pdfcrowd.com/?ref=pdf

case AF_LIB_EVENT_ASR_GET_RESPONSE:

// Response to af_lib_get_attribute()

break;

case AF_LIB_EVENT_MCU_DEFAULT_NOTIFICATION:

// Unsolicited default notification for an MCU attribute

break;

case AF_LIB_EVENT_ASR_NOTIFICATION:

// Unsolicited notification of non-MCU attribute change

switch (attributeId) {

case AF_MODULO_LED:

// Update the state of the LED based on the actual attribute value.

moduloLEDIsOn = (*value == 0);

break;

case AF_MODULO_BUTTON:

// curButtonValue is checked in loop(). If changed, will toggle the blinking state.

curButtonValue = *(uint16_t*) value;

break;

case AF_SYSTEM_ASR_STATE:

switch (value[0]) {

case AF_MODULE_STATE_REBOOTED:

initializationPending = true; // Just rebooted, so we're not yet initialized

attr1SyncPending = true; // Set Attribute 1 (happens in loop())

break;

case AF_MODULE_STATE_LINKED:

break;

case AF_MODULE_STATE_UPDATING:

break;

case AF_MODULE_STATE_UPDATE_READY:

// OTA has been received - reboot needed to use new code

rebootPending = true;

break;

case AF_MODULE_STATE_INITIALIZED:

// ASR signals that it's ready

initializationPending = false;

break;

case AF_MODULE_STATE_RELINKED:

https://pdfcrowd.com/?ref=pdf

break;

}

break;

}

break;

case AF_LIB_EVENT_MCU_SET_REQUEST:

// Request from ASR to MCU to set an MCU attribute, requires a call to

af_lib_send_set_response()

switch (attributeId) {

case AF_BLINK:

// This MCU attribute controls whether we should be blinking.

blinking = (*value == 1);

af_lib_send_set_response(af_lib, AF_BLINK, true, valueLen, value);

break;

}

break;

}

}

void setup() {

Serial.begin(9600);

while (!Serial) {;} // wait for serial port

Serial.println("Starting sketch: afBlink");

Serial.println("Teensy resetting Modulo");

pinMode(RESET, OUTPUT);

digitalWrite(RESET, 0);

delay(250);

digitalWrite(RESET, 1);

// Start the sketch awaiting initialization

initializationPending = true;

Serial.print("Configuring communications...sketch will use SPI");

Serial.println("SPI");

af_transport_t* arduinoSPI = arduino_transport_create_spi(CS_PIN);

af_lib = af_lib_create_with_unified_callback(attrEventCallback, arduinoSPI);

arduino_spi_setup_interrupts(af_lib, digitalPinToInterrupt(INT_PIN));

}

https://pdfcrowd.com/?ref=pdf

void loop() {

// Give the afLib state machine some time.

af_lib_loop(af_lib);

if (initializationPending) {

// If we're awaiting initialization, don't bother checking/setting attributes

} else {

// If we were asked to reboot (e.g. after an OTA firmware update), make the call here in

loop().

// In order to make this fault-tolerant, we'll continue to retry if the command fails.

if (rebootPending) {

int retVal = af_lib_set_attribute_32(af_lib, AF_SYSTEM_COMMAND,

AF_MODULE_COMMAND_REBOOT);

rebootPending = (retVal != AF_SUCCESS);

if (!rebootPending) {

// Reboot command sent successfully; now awaiting AF_MODULE_STATE_INITIALIZED

initializationPending = true;

}

}

// After reboot, need to inform service of value of all MCU attributes (in this case just

attr 1)

if (attr1SyncPending) {

if (af_lib_set_attribute_bool(af_lib, AF_BLINK, blinking) == AF_SUCCESS) {

attr1SyncPending = false;

}

}

// Modulo button toggles 'blinking'

if (prevButtonValue != curButtonValue) {

if (af_lib_set_attribute_bool(af_lib, AF_BLINK, !blinking) == AF_SUCCESS) {

blinking = !blinking;

prevButtonValue = curButtonValue;

}

}

// Flash the LED whenever the 'blinking' value is true

if (blinking) {

if (millis() - lastBlink > BLINK_INTERVAL) {

toggleModuloLED();

lastBlink = millis();

}

}

}

}

 Next: MCU Attributes - Update All Updated September 25, 2019

© 2015-2019 Afero | Legal | Privacy | Afero Home

https://pdfcrowd.com/?ref=pdf

 Next: MCU Attributes - Update All Updated September 25, 2019

© 2015-2019 Afero | Legal | Privacy | Afero Home

https://developer.afero.io/FW-UpdateAll
https://www.afero.io/legal
https://www.afero.io/privacy
https://www.afero.io/
https://developer.afero.io/
https://pdfcrowd.com/?ref=pdf

